On Jacobi Fields and a Canonical Connection in Sub-riemannian Geometry
نویسندگان
چکیده
In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.
منابع مشابه
The Geometry of Sub-riemannian Three-manifolds
The local equivalence problem for sub-Riemannian structures on threemanifolds is solved. In the course of the solution, it is shown how to attach a canonical Riemannian metric and connection to the given sub-Riemannian metric and it is shown how all of the differential invariants of the sub-Riemannian structure can be calculated. The relation between the completeness of the sub-Riemannian metri...
متن کاملSub-Riemannian curvature in contact geometry
We compare different notions of curvature on contact sub-Riemannian manifolds. In particular we introduce canonical curvatures as the coefficients of the sub-Riemannian Jacobi equation. The main result is that all these coefficients are encoded in the asymptotic expansion of the horizontal derivatives of the sub-Riemannian distance. We explicitly compute their expressions in terms of the standa...
متن کاملJacobi Equations and Comparison Theorems for Corank 1 Sub-riemannian Structures with Symmetries
The Jacobi curve of an extremal of optimal control problem is a curve in a Lagrangian Grassmannian defined up to a symplectic transformation and containing all information about the solutions of the Jacobi equations along this extremal. In our previous works we constructed the canonical bundle of moving frames and the complete system of symplectic invariants, called curvature maps, for parametr...
متن کاملSome vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملAnisotropically Weighted and Nonholonomically Constrained Evolutions on Manifolds
We present evolution equations for a family of paths that results from anisotropically weighting curve energies in non-linear statistics of manifold valued data. This situation arises when performing inference on data that have non-trivial covariance and are anisotropic distributed. The family can be interpreted as most probable paths for a driving semi-martingale that through stochastic develo...
متن کامل